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1 INTRODUCTION                                                                     

everal set theories can be considered as mathematical tools 
for dealing with uncertainties, namely, the theory of fuzzy 
sets [1], the theory of intuitionistic fuzzy sets [2], [3], the 

theory of vague sets [4], the theory of interval mathematics [5] 
and the theory of rough sets [6]. Molodtsov [7] in 1999, intro-
duced the concept of soft set theory as a general mathematical 
tool to deal with uncertainties while modeling the problems 
with incomplete information. Many researchers improved the 
concept of soft sets. Maji et. al. [8] defined operations of soft 
sets. Pie and Miao [9] showed that soft sets are a class of spe-
cial information systems. Cagman and Enginoglu [10] rede-
fined  the  operations  of  the  soft  sets  and constructed  a  
uni-int  decision  making  method  by  using  these  new  oper-
ations and  developed  soft  set  theory. Aktas and Cagman 
[11] compared soft sets to fuzzy sets and rough sets. Babitha 
and Sunil [12] introduced the soft set relation and discussed 
related concepts such as equivalent soft set relation, partition 
and composition. Kharal and Ahmad [13] defined soft images 
and soft inverse images of soft sets. They also applied these 
notions to the problem of medical diagnosis in medical sys-
tems. Topological structure of soft sets also was studied by 
many researchers. Cagman [14] studied the concepts of soft 
topological spaces and some related concepts. Varol et al. [15] 
interpreted a classical  topology as a soft set over the power set 
𝒫�(X) and characterized also some other categories related to 
crisp topology and fuzzy topology as subcategories of the cat-
egory of soft sets. 

General Topology was developed by many research-
ers. A Csaszar [16] introduced the theory of generalized topo-
logical spaces. Jyothis and Sunil [17], [18] introduced the con-
cept of Soft Generalized Topological Space (SGTS) and studied 
the Soft μ-compactness in SGTSs. The generalized topology is 
different from topology by its axioms. According to Csaszar, a 
collection of subsets of X is a generalized topology on X if and 
only if it contains the empty set and arbitrary union of its 
members.  But the soft generalized topology is based on soft 

sets theory and not sets. Some other studies on GTS’s can be 
listed as [19], [20], [21]. 

This paper is organized as follows. In the second section, 
we give as a preliminaries, some well-known results in soft set 
theory and SGTS’s. In section three, we introduce the concept 
of soft generalized separation axioms in SGTS’s and discuss 
some of its properties and characterizations. We also investi-
gate the behavior some soft generalized separation axioms 
under the soft continuous, soft open and soft closed mappings. 

2. PRELIMINARIES 

In this section, we recall the basic definitions and results of 
soft set theory and SGTS’s which will be needed in the sequel. 
Throughout this paper U denotes initial universe, E denotes 
the set of all possible parameters, (U) is the power set of U and 
A is a nonempty subset of E. 
Definition 2.1. [14] A soft set FA on the universe U is defined 
by the set of ordered pairs FA= {(e, fA(e)) / e ∈�E, fA(e) ∈�𝒫�(U)}, 
where fA : E → 𝒫�(U) such that fA(e) = ∅ if e ∉ A. Here fA is 
called an approximate function of the soft set FA. The value of 
fA(e) may be arbitrary. Some of them may be empty, some may 
have nonempty intersection. The set of all soft sets over U with 
E as the parameter set will be denoted by S(U)E or simply S(U). 
Definition 2.2. [14] Let FA ∈ S(U). If fA(e) = ∅ for all e ∈ E, then 
𝐹  is called an empty soft set, denoted by F∅. fA(e) = ∅ means 
that there is no element in U related to the parameter e in E. 
Therefore we do not display such elements in the soft sets as it 
is meaningless to consider such parameters. 
Definition 2.3. [14] Let FA ∈ S(U). If fA(e) = U for all e ∈ A, then 
𝐹  is called an A-universal soft set, denoted by FÃ. If A = E, 
then the A-universal soft set is called an universal soft set, de-
noted by FẼ. 
Definition 2.4. [14] Let FA, FB ∈ S(U). Then FB is a soft subset of 
FA (or FA is a soft superset of FB), denoted by FB ⊆�FA, if fB(e) ⊆�
fA(e), for all e ∈ E. 
Definition 2.5. [14] Let FA, FB ∈ S(U). Then FB and FA are soft 
equal, denoted by FB =�FA, if fB(e) =�fA(e), for all e ∈ E. 
Definition 2.6. [14] Let FA, FB ∈ S(U). Then, the soft union of 
FA and FB, denoted by FA�∪�FB, is defined by the approximate 
function f(A∪B)(e) = fA(e) ∪ fB(e). 
Definition 2.7. [14] Let FA, FB ∈ S(U). Then, the soft intersec-
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tion of FA and FB, denoted by FA�∩�FB, is defined by the approx-
imate function f(A∩B)(e) = fA(e) ∩ fB(e). FA and FB are said to be 
soft disjoint if FA ∩ FB = F∅. 
Definition 2.8. [14] Let FA, FB ∈ S(U). Then, the soft difference 
of FA and FB, denoted by FA∖FB, is defined by the approximate 
function f(A∖B)(e) = fA(e) ∖ fB(e). 
Definition 2.9. [14] Let FA ∈ S(U). Then, the soft complement 
of FA, denoted by 𝐹 

 , is defined by the approximate function 
𝑓 
 (𝑒) = (fA(e))c, where (fA(e))c is the complement of the set 

fA(e), that is, (fA(e))c = U ∖ fA(e) for all e �∈ E. Clearly (𝐹 
 ) = FA, 

𝐹∅
 
�= FẼ, and 𝐹 

  = F∅. 

Definition 2.10. [14] Let FA ∈ S(U). The soft power set of FA, 
denoted by (FA), is defined by (FA) = {FAi

 / FAi
 ⊆�FA,�i�∈�J} 

Theorem 2.11. [14] Let FA, FB, FC ∈ S(U). Then, 
(1) FA�∪ 𝐹 

  = FẼ 
(2) FA ∩ 𝐹 

  = F∅. 
(3) FA ⊆�FB�⇒�𝐹 

 �⊆�𝐹 
 . 

(4) FA ∩ FB = F∅ ⇔�FA�⊂�𝐹 
  

(5) FA ∪ FB = FB ∪ FA. 
(6) FA ∩ FB = FB ∩ FA. 
(7) (FA�∪ FB)c = 𝐹 

 ∩ 𝐹 
 . 

(8) (FA ∩ FB)c =�𝐹 
 ∪ 𝐹 

 . 
(9) FA ∪ (FB ∩ FC) = (FA ∪ FB) ∩ (FA ∪ FC). 
(10) FA ∩ (FB ∪ FC) = (FA ∩ FB) ∪ (FA ∩ FC). 

Definition 2.12. [13] Let S(U)E and S(V)K be the families of all 
soft sets over U and V respectively. Let φ : U →  V and χ : E → 
K be two mappings. The soft mapping φχ: S(U)E → S(V)K is 
defined as: 
(1) Let FA be a soft set in S(U)E. The image of FA under the 

soft mapping φχ is the soft set over V, denoted by φχ(FA) 
and is defined by 
𝜑 (𝑓 )(𝑘) =

�{
⋃ �𝜑(𝑓 (𝑒)),���������if�𝜒

  (𝑘)�∩ �𝐴� ≠ �∅; �∈�   ( )�∩� 

∅,������������������������������otherwise
        for 

all 𝑘 ∈ 𝐾. 
(2) Let 𝐺  be a soft set in S(V)K. The inverse image of 𝐺  

under the soft mapping 𝜑  is the soft set over U, denot-

ed by  𝜑 
  (𝐺 ) and is defined by 

               𝜑 
  (𝑔 )(𝑒) = � {

𝜑  (𝑔 (𝜒(𝑒))),����������������if 𝜒(𝑒) � ∈ 𝐵;
∅,��������������������������������������otherwise

             

for all 𝑒 ∈ 𝐸. 
The soft mapping φχ is called soft injective, if φ and χ are injec-
tive. The soft mapping φχ is called soft surjective, if φ and χ 
are surjective. The soft mapping φχ is called soft bijective iff φχ 
is soft injective and soft surjective. 
Theorem 2.13. [13] Let S(U)E and S(V)K be the families of all 
soft sets over U and V respectively. Let FA, FB, FAi

 ∈�S(U)E and 

GA, GB, GBi
 ∈�S(V)K. For a soft mapping φχ : S(U)E → S(V)K the 

following statements are true: 
(1) If FB ⊆ FA, then φχ(FB) ⊆ φχ(FA). 
(2) φχ(F∅) = F∅. 
(3) φχ(⋃i∈J FAi) = ⋃i∈J(φχ(FAi)). 
(4) φχ(⋂i∈J FAi) ⊆ ⋂i∈J (φχ(FAi)), equality holds if φχ is 

soft injective. 
(5) FA ⊆ φχ

–1(φχ(FA)), equality holds if φχ is soft injec-
tive. 

(6) φχ(φχ
–1(FA)) ⊆ FA, equality holds if φχ is soft surjec-

tive. 
(7) If GB ⊆ GA, then φχ

–1(GB) ⊆ φχ
–1(GA). 

(8) φχ
–1(F∅) = F∅.  

(9) φχ
–1(𝐺 

 ) = (φχ
–1(GB))c 

(10) φχ
–1(⋃i∈J GBi) = ⋃i∈J(φχ

–1(GBi)). 
(11) φχ

–1(⋂i∈J GBi) = ⋂i∈J(φχ
–1(GBi)). 

 
SOFT GENERALIZED TOPOLOGİCAL SPACES 
Definition 2.14. [17] Let FA ∈ S(U). A Soft Generalized Topol-
ogy (SGT) on FA, denoted by μ or 𝜇   is a collection of soft 

subsets of FA having the following properties: (i) F∅�∈�μ and (ii) 
The soft union of any number of soft sets in μ belong to μ. The 
pair (FA, μ) is called a Soft Generalized Topological Space 
(SGTS). Observe that FA�∈�μ must not hold. 
Definition 2.15. [17] Let FA ∈ S(U) and μ be the collection of all 
possible soft subsets of FA, then μ is a SGT on FA, and is called 
the discrete SGT on FA. 
Definition 2.16. [17] A soft generalized topology μ on FA is 
said to be strong if FA ∈ μ.  
Definition 2.17. [17] Let (FA, μ) be a SGTS. Then, every ele-
ment of μ is called a soft μ–open set. Note that F∅ is a soft μ–
open set. 
Definition 2.18. [17] Let (FA, μ) be a SGTS and FB�⊆�FA. Then 
the collection 𝜇  = {FD ∩ FB / FD�∈�μ} is called a Subspace Soft 

Generalized Topology (SSGT) on FB. The pair (𝐹 , 𝜇  ) is 

called a Soft Generalized Topological Subspace (SGTSS) of FA. 
Definition 2.19. [17] Let (FA, μ) be a SGTS and FB�⊆�FA. Then FB 
is said to be a soft μ-closed set if its soft complement 𝐹 

  is a 
soft μ-open set. 
Theorem 2.20. [17] Let (FA, μ) be a SGTS. Then the following 
conditions hold: 

(1) The universal soft set FẼ is soft μ–closed.  
(2) Arbitrary soft intersections of the soft μ–closed sets 

are soft μ–closed. 
Definition 2.21. [17] Let (FA, μ) be a SGTS and FB�⊆�FA. Then 
the soft μ-closure of FB, denoted by c(FB) or 𝐹 ̅̅ ̅ is defined as the 
soft intersection of all soft μ-closed super sets of FB. Note that 
𝐹 ̅̅ ̅ is the smallest soft μ-closed set that containing FB. 
Theorem 2.22. [17] Let (FA, μ) be a SGTS and FB�⊆�FA. FB is a 
soft μ-closed set iff FB = 𝐹 ̅̅ ̅. 
Theorem 2.23. [17] Let (FA, μ) be a SGTS and FG, FH ⊆�FA. Then 

(1) FG ⊆ F ̅̅ ̅  

(2) (F ̅̅ ̅)
̅̅ ̅̅ ̅̅ = F ̅̅ ̅ 

(3) FG ⊆ FH ⇒ F ̅̅ ̅ ⊆ F ̅̅̅̅  

(4) F ̅̅ ̅ ∩ F ̅̅̅̅ ⊇ F ∩ F ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ � 

(5) F ̅̅ ̅ ∪ F ̅̅̅̅ ⊆ F ∪ F ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(6) α ∈ F ̅̅̅̅  ⇒ every soft μ-open set FG containing α soft in-
tersect FH 

Remark 2.24. Converse of theorem 2.23.(6) is not true in gen-
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eral as shown in the following example. 

Example 2.25. Let U ={u1, u2, u3}, E = {x1, x2, x3}, A = {x1, x2} ⊆ E 
and FA = {(x1, {u1, u2}), (x2, {u2, u3})} and μ = {F∅, FA, FP, FQ, FR}. 
Then (FA, μ) is a SGTS where FP = {(x1, {u2})}, FQ = {(x1, {u2}), (x2, 
{u3})}, FR = {(x1, {u1, u2 }), (x2, {u2})}. The soft μ-closed sets are: 
𝐹∅
  = FẼ, 𝐹 

  = {(x1, {u3}), (x2, {u1}),�(x3, U)}, 𝐹 
  = {(x1, {u1, u3}), (x2, 

U), (x3, U)}, 𝐹 
  = {(x1, {u1, u3}), (x2, {u1, u2}), (x3, U)}, 𝐹 

  = {(x1, 

{u3}), (x2, {u1, u3}), (x3, U)}. Let FB = {(x1, {u1}), (x2, {u2, u3})}. Then 

𝐹 =�𝐹 
  = {(x1, {u1, u3}), (x2, U), (x3, U)}. Take α =�(x1, {u1, u2}) 

then, FR is a soft μ-open set containing α. Now FR ∩ FB = {(x1, 

{u1}), (x2, {u2})} ≠ F∅. But α ∉�F . i.e, We can find a soft μ-open 

set FR containing α soft intersect FB and α ∉�𝐹  . 
Definition 2.26. [17] Let (FA, μ) be a SGTS and α ∈ FA. If there 
is a soft μ-open set FB such that α ∈ FB, then FB is called a soft 
μ-open neighborhood or soft μ-nbd of α. The set of all soft μ-
nbds of α, denoted by ψ(α), is called the family of soft μ-nbds 
of α. i.e, ψ(α) = {FB / FB ∈ μ, α ∈ FB}. 
Definition 2.27. [17] Let (FA, μ) and (FB, η) be two SGTS’s and 
φχ : (FA, μ) → (FB, η) be a soft function. Then 

1. φχ is said to be soft (μ, η)-continuous (briefly, soft con-
tinuous), if for each soft η-open subset FG of FB, the 
inverse image φχ

–1(FG) is a soft μ-open subset of FA. 
2. φχ is said to be soft (μ, η)-open, if for each soft μ-open 

subset FG of FA, the image φχ(FG) is a soft η-open sub-
set of FB. 

3. φχ is said to be soft (μ, η)-closed, if for each soft μ-
closed subset FG of FA, the image φχ(FG) is a soft η-
closed subset of FB. 

Theorem 2.28. [17] Let (FA, μ) and (FB, η) be two SGTS’s and φχ 
: (FA, μ) → (FB, η) be a soft function. Then φχ is soft continuous 
if and only if for every soft η-closed subset FH of FB, the soft set 
φχ

–1(FH) is soft μ-closed in FA. 

3. SOFT GENERALİZED SEPARATION AXIOMS IN SGTSs 

Definition 3.1. Let (FA, μ) be a SGTS and α, β ∈ FA such that α 
≠ β. If there�exists soft μ-open sets FG and FH such that α ∈�FG 
and β ∉�FG or β ∈�FH and α ∉�FH, then (FA, μ) is called a soft 
generalized μ-T0 space. 

Theorem 3.2. Let (FA, μ) be a SGTS and α, β ∈�FA such that α ≠ 
β. If there exists soft μ-open sets FG and FH such that α ∈�FG 
and β ∈�𝐹 

  or β ∈�FH and α ∈�𝐹 
 , then (FA, μ) is a soft general-

ized  μ-T0 space. 

Proof: Let α, β ∈ FA such that α ≠ βand FG, FH ∈�μ�such that�α ∈�
FG and β ∈�𝐹 

  or β ∈ FH and α ∈�𝐹 
 . If α ∈�𝐹 

  then α ∉�(𝐹 
 )  = 

FH. Similarly if β ∈�𝐹 
  then β ∉�(𝐹 

 )  = FG. Hence ∃ FG, FH ∈�μ�
such that α ∈�FG and β ∉�FG or β ∈�FH and α ∉�FH. Hence (FA, μ) 
is a soft generalized μ-T0 space. ∎ 

Example 3.3. A discrete SGTS (FẼ, μ) is a soft generalized μ-T0 
space, since every {α} is a soft μ-open set. 

Theorem 3.4. Let φχ : (FA, μ) → (FB, η) be a soft (μ,�) continu-

ous soft bijective function. If (FB, ) is a soft generalized�η-T0 
space, then (FA, μ) is also a soft generalized μ-T0 space. 

Proof: Let (FB, ) be a soft generalized η-T0 space. Suppose α, β 

∈�FA such that α ≠ βSince φχ is soft injective, ∃ γ, δ ∈�FB such 

that γ = φχ(α), δ = φχ(β) and γ ≠ δ. Since (FB, ) is a soft gener-

alized η-T0 space, ∃ FG, FH ∈��such that γ ∈�FG and δ ∉�FG or δ 
∈�FH and γ ∉�FH. This implies that φχ(α) ∈�FG and φχ(β) ∉�FG or 
φχ(β) ∈�FH and φχ(α) ∉�FH ⇒ α ∈�φχ

–1(FG) and β ∉�φχ
–1(FG) or β ∈�

φχ
–1(FH) and α ∉�φχ

–1(FH). Since φχ is a soft (μ,�) continuous 
function, φχ

–1(FG) and φχ
–1(FH) are soft μ-open sets. Hence (FA, 

μ) is a soft generalized μ-T0 space.∎ 

Theorem 3.5. Let φχ : (FA, μ)  (FB, ) be a soft (μ,�) open soft 
bijective function. If (FA, μ) is a soft generalized μ-T0 space, 
then (FB, ) is a soft generalized η-T0 space.     

Proof: Suppose that (FA, μ) is a soft generalized�μ-T0 space. Let 
α, β ∈�FB such that α ≠ βSince φχ is a soft bijective function ∃ 
γ, δ ∈�FA such that α = φχ(γ), β =  φχ(δ) and γ ≠ δ. Since (FA, μ) 
is a soft generalized�μ-T0 space, ∃ FG, FH ∈�μ�such that�γ�∈�FG 

and δ ∉�FG or δ ∈�FH and γ ∉�FH. This implies that φχ (γ) ∈�
φχ(FG) and φχ(δ) ∉�φχ(FG) or φχ(δ) ∈�φχ(FH) and φχ(γ) ∉�φχ(FH) ⇒ 
α ∈�φχ(FG) and β ∉�φχ(FG) or β ∈�φχ(FH) and α ∉�φχ(FH). Since φχ 

is a soft (μ,�) open function, both φχ(FG) and φχ(FH) are soft -

open sets. Hence (FB, ) is a soft generalized -T0 space.∎ 

Definition 3.6. Let (FA, μ) be a SGTS and α, β ∈�FA such that α 
≠ βIf there�exists soft μ-open sets FG and FH such that α ∈�FG 
and β ∉�FG and β ∈�FH and α ∉�FH, then (FA, μ) is called a soft 
generalized μ-T1 space. 

Theorem 3.7. Let (FẼ, μ) be a SGTS. If for each α ∈�FẼ, {α} is a 
soft μ-closed set, then (FẼ, μ) is a soft generalized μ-T1 space. 

Proof: Let α and β be two points of FẼ such that α ≠ β. Given 
that {α} and {β} are soft μ-closed sets. Then {α}c and {β}c are soft 
μ-open sets. Clearly α ∈�{β}c and β ∉�{β}c and β ∈�{α}c and α ∉�
{α}c. Hence (FẼ, μ) is a soft generalized μ-T1 space.∎ 

Theorem 3.8. Let (FA, μ) be a SGTS and α, β ∈�FA such that α ≠ 
βIf ∃ FG, FH ∈ μ such that�α ∈�FG and β ∈�𝐹 

  andβ ∈�FH and α 

∈�𝐹 
 then(FA, μ) is a soft generalized μ-T1 space. 

Proof: The proof is similar to the proof of theorem 3.2. 

Theorem 3.9. Every soft generalized�μ-T1 space is a soft gener-
alized�μ-T0 space. 

Proof: Let (FA, μ) be a soft generalized μ-T1 space and α, β ∈�FA 
such that α ≠ β. So there exists soft μ-open sets FG and FH such 
that α ∈�FG and β ∉�FG and β ∈�FH and α ∉�FH. Obviously then 
we have α ∈�FG and β ∉�FG or β ∈�FH and α ∉�FH. Hence (FA, μ) 
is a soft generalized μ-T0 space.∎ 

Theorem 3.10. Let (FA, μ) be a soft generalized μ-T1 space and 
α ∈�FA. Then for each soft μ-open set FG with α ∈�FG, {α}⊆ ⋂FG. 

Proof: Since α ∈�FG for each soft μ-open set FG, α ∈�⋂FG. Then it 
is obvious that {α}⊆ ⋂FG∎ 

Theorem 3.11. Let (FA, μ) be a SGTS and α, β ∈�FA such that α ≠ 
β. If ∃ FG, FH ∈�μ such that α ∈�FG and {β} ∩ FG = F∅ and β ∈�FH 

and {α} ∩ FH = F∅, then (FA, μ) is a soft generalized�μ-T1 space. 

Proof: Similar to the theorem 3.8.∎ 

Theorem 3.12. Let φχ : (FA, μ)  (FB, ) be a soft (μ,�) continu-

ous soft bijective function. If (FB, ) is a soft generalized η-T1 
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space, then (FA, μ) is also a soft generalized�μ-T1 space. 

Proof: Proof is similar to that of soft generalized μ-T0 space.∎ 

Theorem 3.13. Let φχ : (FA, μ)  (FB, ) be a soft (μ,�)-open 
soft bijective function. If (FA, μ) is a soft generalized�μ-T1 space, 
then (FB, ) is also a soft generalized η-T1 space.  

Definition 3.14. Let (FA, μ) be a SGTS. If for all α1, α2 ∈�FA with 
α1 ≠ α2, there exists FG ∈�ψ(α1)�and FH ∈�ψ(α2)�such that FG ∩ 
FH = F∅, then (FA, μ) is called a soft generalized μ-T2 space or 
soft generalized Hausdorff space (SGHS). 

Theorem 3.15. If (FA, μ) be a SGHS and FB is a non-soft empty 
soft subset of FA containing finite number of points, then FB is 
soft μ-closed. 

Proof: Suppose that (FA, μ) is a SGHS. Let us take FB = {α}. 
Now we show that FB is soft μ-closed. If βis a point of FA dif-
ferent from α, then since (FA, μ) is a SGHS, ∃ FG, FH ∈�μ such 
that α ∈�FG, β ∈�FH and FG ∩ FH = F∅. Now FG ∩ FH = F∅�⇒ FG ∩ 
{β} = F∅�⇒ αcannot belong to the soft μ-closure of the soft set 
{β}. As a result, the soft μ-closure of the soft set {α} is {α} itself. 
Hence FB is soft μ-closed.∎ 

Theorem 3.16. A soft generalized subspace of a SGHS is a 
SGHS. 

Proof: Let (FA, μ) be a SGHS and (FB, 𝜇  ) is a SGTSS of FA. Let 

α, β ∈�FB such that α ≠ βThen, since FB ⊂ FA, ∃ αand βin FA 

such that α1 ≠ β1and {α} ⊆ {α1} and {β⊆�{β1}. Since (FA, μ) is 
SGHS, ∃ FG, FH ∈�μ�such that α1 ∈�FG, β1 ∈�FH and FG ∩ FH = F∅. 
Then clearly α ∈�FG ∩ FB and β ∈�FH ∩ FB and (FG ∩ FB) ∩ (FH ∩ 
FB) = (FG ∩ FH) ∩ FB = F∅. i.e., there exist two soft disjoint soft 
𝜇  -open sets FG ∩ FB and FH ∩ FB containing αand 

βrespectively. Hence (FB, 𝜇  ) is a SGH sub space.∎ 

Theorem 3.17. Every SGHS is a soft generalized μ-T1 space. 

Proof: Let (FA, μ) be a SGHS and α, β ∈� FA such that α ≠ 
βThen ∃ FG, FH ∈�μ�such that�α ∈�FG, β ∈�FH and FG ∩ FH = F∅. 
Since FG ∩ FH = F∅, α ∉�FH, and β ∉�FG. Thus FG, FH ∈�μ�such 
that�α ∈�FG, β ∉�FG and β ∈�FH and α ∉�FH. Hence (FA, μ) is a soft 
generalized μ-T1 space.∎ 

Theorem 3.18. Let (FA, μ) be a SGHS and α ∈�FA. Then {α} = 
∩FP for each soft μ-open set FP with α ∈�FP. 

Proof: Assume that there exists a β ∈�FA such that α ≠ βand β ∈�
∩FP; FP ∈�μ, α ∈�FP. Since (FA, μ) is a SGHS, ∃ FG, FH ∈�μ�such 
that�α ∈�FG, β ∈�FH and FG ∩ FH = F∅. Now FG ∩ FH = F∅ ⇒ FG ∩ 
{β} = F∅. This is a contradiction to the assumption that β ∈�∩FP. 
Hence {α} = ∩FP for each soft μ-open set FP with α ∈�FP.∎ 

Theorem 3.19. Let φχ : (FA, μ) → (FB, ) be a soft bijective soft 

(μ, η) open function. If (FA, μ) is a SGHS then (FB, ) is a SGHS. 

Proof: Let α, β ∈�FB such that α ≠ βSince φχ is a soft bijective 
function, ∃ γ, δ ∈�FA such that α = φχ(γ), β = φχ(δ) and γ ≠ δ. 
Since (FA, μ) is a SGHS, ∃ FG, FH ∈�μ�such that�γ�∈�FG, δ ∈�FH 
and FG ∩ FH = F∅. This implies that φχ(γ) ∈� φχ(FG), φχ(δ) ∈�
φχ(FH) ⇒�α ∈�φχ(FG) and β ∈�φχ(FH). Since φχ is a soft (μ, η)-
open function, φχ(FG) and φχ(FH) are soft η-open sets. Again 
since φχ is a soft bijective, φχ(FG) ∩ φχ(FH) = φχ(FG ∩ FH) = φχ(F∅) 

= F∅. Hence the proof.∎ 

Theorem 3.20. Let φχ : (FA, μ) → (FB, ) be a soft bijective soft 

(μ,�) continuous function. If (FB, ) is a SGHS, then (FA, μ) is 
also a SGHS. 

Proof: Let α, β ∈�FA such that α ≠ β. Since φχ is a soft bijective 
function, ∃ γ, δ ∈�FB such that α= φχ

–1(γ), β = φχ
–1(δ) and γ ≠ δ. 

Since (FB, ) is a SGHS, ∃ FG, FH ∈��such that�γ�∈�FG, δ ∈�FH 
and FG ∩ FH = F∅. Then φχ

–1(FG) and φχ
–1(FH) are soft μ-open 

sets, because φχ is soft (μ,�) continuous. Also FG ∩ FH = F∅ ⇒ 
φχ

–1(FG ∩ FH) = φχ
–1(F∅) ⇒�φχ

–1(FG) ∩ φχ
–1(FH) = F∅.�Now�γ�∈�FG 

and δ ∈ FH ⇒�φχ
–1(γ) ∈ φχ

–1(FG) and φχ
–1(δ) ∈�φχ

–1(FH) ⇒�α ∈ φχ
–

1(FG) and β ∈�φχ
–1(FH). Hence (FA, μ) is a SGHS.∎ 

Definition 3.21. Let (FA, μ) be a SGTS. If for every point α ∈�FA 
and every soft μ-closed set FM such that α ∉�FM, there exists 
two soft μ-open sets FG and FH such that α ∈�FG, FM ⊆ FH and 
FG ∩ FH = F∅, then (FA, μ) is called a soft generalized regular 
space (SGRS). 

Theorem 3.22. Let (FA, μ) be a SGTS and let FK be a soft μ-
closed set and α ∈�FA such that α ∉�FK. If (FA, μ) is a SGRS, then 
there exists soft μ-open set FG such that α ∈�FG and FG ∩ FK = 
F∅. 

Proof: Let FK be a soft μ-closed set and α ∈�FA such that α ∉�FK. 
Since (FA, μ) is a SGRS, ∃ FG, FH ∈�μ such that�α ∈�FG, FK ⊂ FH 
and FG ∩ FH = F∅. Now FG ∩ FH = F∅ ⇒�FG ∩ FK = F∅. Hence the 
proof.∎  

Theorem 3.23. Let (FA, μ) be a SGRS and α ∈ FA. Then  

(i) For a soft μ-closed set FK, α ∉ FK iff {α} ∩ FK = F∅  

(ii) For a soft μ-open set FH, {α} ∩ FH = F∅ ⇒ α ∉ FH. 

Proof: (i) Suppose that (FA, μ) be a SGRS and α ∈�FA. Let FK be 
a soft μ-closed set such that α ∉�FK. Then by theorem 3.22. ∃ FG�
∈ μ such that α ∈�FG and FG ∩ FK = F∅. Since {α} ⊆�FG, we have 
{α} ∩ FK = F∅. The converse part is obvious.  
(ii) Obvious.∎ 
Theorem 3.24. Let (FA, μ) be a SGRS and α ∈�FA. Then for each 
soft μ-closed set FK such that {α} ⊈�FK, there exists soft μ-open 
sets FG and FH such that {α} ⊆�FG, FK ⊆ FH and FG ∩ FK = F∅. 
Proof: Assume that (FA, μ) is a SGRS and α ∈�FA. Let FK be a 
soft μ-closed set such that {α} ⊈�FK. Then α ∉�FK. Since (FA, μ) is 
a SGRS, ∃ FG, FH ∈ μ such that α ∈�FG, FK ⊆�FH and FG ∩ FH = F∅. 
Since α ∈�FG, {α} ⊆�FG. Hence FG and FH are soft μ-open sets 
such that {α} ⊆ FG, FK ⊆ FH and FG ∩ FH = F∅.∎ 
Theorem 3.25. Let (FA, μ) is a SGRS. Then for every α ∈ FA and 
every soft μ-open set FD with α ∈�FD, there exists a soft μ-open 
set FH such that α ∈�FH ⊂�𝐹 ̅̅ ̅�⊂�FD. 
Proof: Suppose that (FA, μ) is a SGRS. Let α ∈�FA, and FD be any 
soft μ-open set such that α ∈�FD. Then 𝐹 

  is a soft μ-closed set 
such that α ∉�𝐹 

 Since (FA, μ) is a SGRS, there exists soft μ-
open sets FG and FH such that α ∈�FH, 𝐹 

  ⊂�FG and FG ∩ FH = F∅. 
Now FG ∩ FH = F∅ ⇒�FH ⊆�𝐹 

 . Also 𝐹 
  ⊆�FG ⇒�𝐹 

 �⊆ FD. This im-

plies that α ∈�FH ⊆�𝐹 ̅̅ ̅ ⊆ (𝐹 
 )�̅̅ ̅̅ ̅̅ ̅ ⊆�𝐹 

 �⊆�FD. ∎ 

Theorem 3.26. Let (FA, μ) and (FB, ) be SGTS’s and φχ : (FA, μ) 

→ (FB, ) be a soft bijective, soft (μ, ) continuous and soft (μ, 

) closed map. If (FB, ) is a SGRS, then (FA, μ) is also a SGRS. 

IJSER



International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015                                                                                                   973 

ISSN 2229-5518 
 

IJSER © 2015 

http://www.ijser.org  

Proof: Assume that (FB, ) is a SGRS. Let α ∈�FA and FK be any 
soft μ-closed set in FA such that α ∉�FK. Since φχ is a soft bijec-
tive function, ∃ δ ∈�FB such that φχ(α) = δ ⇒ α = φχ

–1(δ). Also 
φχ(FK) is a soft -closed set in FB, since φχ is a closed map. Now 

α ∉�FK ⇒ φχ(α) ∉�φχ(FK) ⇒ δ ∉�φχ(FK). Since (FB, ) is a SGRS, ∃ 

FG, FH ∈� such that δ ∈�FG, φχ(FK) ⊆ FH and FG ∩ FH = F∅. Then 

φχ
–1(FG) and φχ

–1(FH) are soft μ-open sets, since φχ is a soft (μ, ) 
continuous map. Now δ ∈�FG ⇒ φχ

–1(δ) ∈ φχ
–1(FG) ⇒ α ∈�φχ

–

1(FG); φχ(FK) ⊆ FH ⇒ φχ
–1(φχ(FK)) ⊆�φχ

–1(FH) ⇒�FK ⊆�φχ
–1(FH) and 

φχ
–1(FG) ∩ φχ

–1(FH) = φχ
–1(FG ∩ FH) = φχ

–1(F∅) = F∅, since φχ is a 
soft bijective map. Hence (FA, μ) is a SGRS.∎ 
Theorem 3.27. Let (FA, μ) be a SGTS. Then (FA, μ) is a SGRS iff 
for each α ∈�FA and a soft μ-closed set FK such that α ∉�FK, there 
exists a soft μ-open set FG such that α ∈�FG and 𝐹 ̅̅ ̅ ∩ FK = F∅. 
Proof: Suppose that (FA, μ) is a SGRS. Let α ∈�FA and FK be a 
soft μ-closed set such that α ∉�FK. Then there�exists�soft μ-open 
sets FG and FH such that α ∈�FG, FK ⊆�FH and FG ∩ FH = F∅. Now 
FG ∩ FH = F∅ ⇒ FG ⊆�𝐹 

  and FK ⊆�FH ⇒�𝐹 
  ⊆�𝐹 

 . Thus FG ⊆�𝐹 
  ⊆ 

𝐹 
 . This implies that 𝐹 ̅̅ ̅ ⊂(𝐹 

 )̅̅ ̅̅ ̅̅ �= 𝐹 
  ⊆�𝐹 

 . Therefore 𝐹 ̅̅ ̅ ∩ FK = 
F∅.  

Conversely, suppose α ∈�FA and FK be a soft μ-closed 
set such that α ∉�FK. Then by hypothesis there exists a soft μ-
open set FG such that α ∈�FG and 𝐹 ̅̅ ̅ ∩ FK = F∅. Now 𝐹 ̅̅ ̅ ∩ FK = F∅ 

⇒ FK ⊆ (𝐹 ̅̅ ̅)
 . Also FG ⊆�𝐹 ̅̅ ̅�⇒ (𝐹 ̅̅ ̅)

  ⊆�𝐹 
 �⇒ FG ⊆�((𝐹 ̅̅ ̅)

 ) . There-
fore FG ∩ (𝐹 ̅̅ ̅)

  =  F∅. Thus ∃ FG,�(𝐹 ̅̅ ̅)
  ∈ μ such that α ∈�FG, FK ⊆�

(𝐹 ̅̅ ̅)
 , FG ∩ (𝐹 ̅̅ ̅)

  = F∅ ⇒ (FA, μ) is a SGRS.∎ 

Theorem 3.28. Let φχ : (FA, μ) → (FB, ) be a soft (μ,�) continu-

ous, soft (μ,�) open, soft bijective function. If (FA, μ) is a SGRS 

then (FB, ) is also a SGRS.  

Proof: Let α ∈�FB and FK a soft -closed set such that α ∉�FK. 
Since φχ is soft bijective, ∃ δ ∈�FA such that α = φχ(δ). Again 

since φχ is soft (μ,�) continuous, φχ
–1(FK) is  a soft μ -closed set 

such that δ ∉�φχ
–1(FK). Since (FA, μ) is a SGRS, ∃ FG, FH ∈�μ�such 

that δ ∈�FG, φχ
–1(FK) ⊆ FH and FG ∩ FH = F∅. Then φχ(δ) ∈�φχ(FG), 

φχ(φχ
–1(FK)) ⊆ φχ(FH) and φχ(FG ∩ FH) = φχ(F∅) ⇒ α ∈�φχ(FG), FK 

⊆ φχ(FH) and φχ(FG) ∩ φχ(FH) = F∅, since φχ is soft bijective. 
Moreover φχ(FG) and φχ(FH) are soft η-open sets, because φχ is 

(μ,�)-open. Hence (FB, ) is a SGRS.∎ 

Definition 3.29. Let (FA, μ) be a SGTS. If for every pair of soft 
disjoint soft μ-closed sets FM and FN, there� exists two soft μ-
open sets FG and FH such that FM ⊆ FG, FN ⊆�FH and FG ∩ FH = 
F∅. Then (FA, μ) is called soft generalized normal space 
(SGNS). 

Theorem 3.30. A SGTS (FA, μ) is a SGNS iff for any soft μ-
closed set FK and a soft μ-open set FD containing FK, there�ex-
ists soft μ-open set FG such that FK ⊆ FG and 𝐹 ̅̅ ̅ ⊆�FD. 

Proof: Let (FA, μ) be a SGNS and FK be a soft μ-closed set and 
FD be a soft μ-open set such that FK ⊆�FD. Then FK and 𝐹 

  are 
soft disjoint soft μ-closed sets. Since (FA, μ) is a SGNS, ∃ FG, FH 
∈�μ�such that�FK ⊆�FG, 𝐹 

  ⊆�FH and FG ∩ FH = F∅. Now FG ∩ FH = 

F∅ ⇒�FG ⊆�𝐹 
 �⇒�𝐹 ̅̅ ̅ ⊆�𝐹 

 ̅̅ ̅ = 𝐹 
 . Also 𝐹 

  ⊆�FH ⇒�𝐹 
 �⊆ (𝐹 

 )  = FD. 
Hence FK ⊆�FG and 𝐹 ̅̅ ̅ ⊆�FD. 

Conversely, suppose that FM and FN are two soft μ-
closed sets with soft empty soft intersection. Then, since FM ∩ 

FN = F∅, FM ⊆�𝐹 
 . i.e., FM is a soft μ-closed set and 𝐹 

  is a soft μ-
open set containing FM. So by hypothesis, there exists soft μ-
open set FG such that FM ⊆�FG and 𝐹 ̅̅ ̅ ⊆�𝐹 

 . Now 𝐹 ̅̅ ̅ ⊂�𝐹 
  ⇒�FN 

⊂�(𝐹 ̅̅ ̅)
 . Also FG ⊆ 𝐹 ̅̅ ̅ ⇒�(𝐹 ̅̅ ̅)

 �⊂�𝐹 
 �⇒�(𝐹 

 ) �⊂�((𝐹 ̅̅ ̅)
 ) �  ⇒�FG ⊂�

((𝐹 ̅̅ ̅)
 )  ⇒�FG ∩ (𝐹 ̅̅ ̅)

  = F∅. Thus FG and (𝐹 ̅̅ ̅)
  are soft μ-closed 

sets such that FM ⊆� FG, FN ⊆ (𝐹 ̅̅ ̅)
  and FG ∩�(𝐹 ̅̅ ̅)

  = F∅. Hence 
(FA, μ) is a SGNS.∎  

Theorem 3.31. Let φχ : (FA, μ) → (FB, ) be a soft bijective func-

tion which is both soft (μ,�) continuous and soft (μ, η) open. If 

(FA, μ) is a SGNS then (FB, ) is also a SGNS. 

Proof: Let FM and FN be a pair of soft η-closed sets in (FB, ) 

such that FM ∩ FN = F∅. Since φχ is a soft (μ,�) continuous func-
tion, φχ

–1(FM) and φχ
–1(FN) are soft μ-closed sets in (FA, μ). Also 

φχ
–1(FM) ∩ φχ

–1(FN) = φχ
–1(FM ∩ FN) = φχ

–1(F∅) = F∅. Again since 
(FA, μ) is a SGNS, ∃ FG, FH ∈�μ�such that�φχ

–1(FM) ⊆ FG, φχ
–1(FN) 

⊆ FH and FG ∩ FH = F∅ ⇒�FM ⊆ φχ(FG) and FN ⊆ φχ(FH), since φχ 
is soft surjective. Since φχ is soft (μ, η) open, φχ(FG) and φχ(FH) 
are soft η-open sets. Also φχ(FG) ∩ φχ(FH) = φχ(FG ∩ FH) = φχ(F∅) 
= F∅, since φχ is soft bijective. Hence φχ(FG) and φχ(FH) are soft 
η-open sets such that FM ⊆ φχ(FG), FN ⊆ φχ(FH) and φχ(FG) ∩ 
φχ(FH) = F∅. Hence (FB, ) is a SGNS.∎ 

Theorem 3.32. If (FẼ,�μ)�is a SGNS, then for every pair of soft 
μ-open sets FD and FP whose soft union is FẼ, then there�exists 
soft μ-closed sets FM and FN such that FM ⊂ FD, FN ⊂ FP and FM 
∪ FN = FẼ.  

Proof: Suppose that (FẼ, μ) is a SGNS. Let FD and FP be a pair 
of soft μ-open sets such that FD ∪ FP = FẼ. Then 𝐹 

  and 𝐹 
  are 

soft μ-closed sets. Also 𝐹 
  ∩ 𝐹 

  = (FD ∪ FP)c = 𝐹 ̃
  = F∅. Since (FẼ, 

μ) is a SGNS, ∃ FG, FH ∈ μ such that 𝐹 
  ⊆ FG, 𝐹 

  ⊆ FH and FG ∩ 
FH = F∅. Take FM = 𝐹 

  and FN = 𝐹 
 . Then FM and FN are soft μ-

closed sets. Also FM ∪ FN = 𝐹 
 ∪ 𝐹 

  = (FG ∩ FH)c = FẼ. Since 𝐹 
  ⊆ 

FG, 𝐹 
  ⊆ FH ⇒ 𝐹 

  ⊆ FD and 𝐹 
  ⊆ FP. Thus there exists soft μ-

closed sets FM and FN such that FM ⊆ FD, FN ⊆ FP and FM ∪ FN = 
FẼ.∎ 

Definition 3.33. Let (FA, μ) be a SGTS. If for any point α ∈�FA 
and a soft μ-closed set FB such that α ∉�FB, there�exists�soft con-
tinuous function φχ : FA → F[0,1] such that φχ(α) = (0, F[0,1](0)) 
and φχ(FB) = (1, F[0,1](1)) where F[0,1] is a SGHS. Then (FA, μ) is 
called a soft generalized completely regular space (SGCRS). 

Theorem 3.34. Every SGCRS is a SGRS. 

Proof: Let (FA, μ) be a SGCRS. Let α ∈�FA and FK is a soft μ-
closed set such that α ∉�FK. Since (FA, μ) is a SGCRS, there ex-
ists a soft continuous function φχ : FA → F[0,1] where F[0,1] is a 
SGHS and φχ(α) = (0, F[0,1](0)) and φχ(FK) = (1, F[0,1] (1)). Let β = 
(0, F[0,1](0)) and γ = (1, F[0,1](1)). Since F[0,1]  is a SGHS, there�ex-
ists two soft sets FG and FH such that β ∈�FG, γ ∈�FH and FG ∩ FH 
= F∅. Let FP = φχ

–1(FG) and FQ = φχ
–1(FH). Since φχ is a soft con-

tinuous function, FP and FQ are soft μ-open sets. Then clearly α 
∈�FP, FK ⊂ FQ and FP ∩ FQ = F∅. Hence (FA, μ) is a SGRS.∎ 
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